1,652 research outputs found

    Capture numbers and islands size distributions in models of submonolayer surface growth

    Full text link
    The capture numbers entering the rate equations (RE) for submonolayer film growth are determined from extensive kinetic Monte Carlo (KMC) simulations for simple representative growth models yielding point, compact, and fractal island morphologies. The full dependence of the capture numbers on island size, and on both the coverage and the D/F ratio between the adatom diffusion coefficient D and deposition rate F is determined. Based on this information, the RE are solved to give the RE island size distribution (RE-ISD). The RE-ISDs are shown to agree well with the corresponding KMC-ISDs for all island morphologies. For compact morphologies, however, this agreement is only present for coverages smaller than about 5% due to a significantly increased coalescence rate compared to fractal morphologies. As found earlier, the scaled KMC-ISDs as a function of scaled island size approach, for fixed coverage, a limiting curve for D/F going to infinity. Our findings provide evidence that the limiting curve is independent of the coverage for point islands, while the results for compact and fractal island morphologies indicate a dependence on the coverage.Comment: 13 pages, 12 figure

    Short-Term Memory in Orthogonal Neural Networks

    Full text link
    We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let

    Influence of external magnetic fields on growth of alloy nanoclusters

    Full text link
    Kinetic Monte Carlo simulations are performed to study the influence of external magnetic fields on the growth of magnetic fcc binary alloy nanoclusters with perpendicular magnetic anisotropy. The underlying kinetic model is designed to describe essential structural and magnetic properties of CoPt_3-type clusters grown on a weakly interacting substrate through molecular beam epitaxy. The results suggest that perpendicular magnetic anisotropy can be enhanced when the field is applied during growth. For equilibrium bulk systems a significant shift of the onset temperature for L1_2 ordering is found, in agreement with predictions from Landau theory. Stronger field induced effects can be expected for magnetic fcc-alloys undergoing L1_0 ordering.Comment: 10 pages, 3 figure

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Spontaneous structure formation in a network of chaotic units with variable connection strengths

    Full text link
    As a model of temporally evolving networks, we consider a globally coupled logistic map with variable connection weights. The model exhibits self-organization of network structure, reflected by the collective behavior of units. Structural order emerges even without any inter-unit synchronization of dynamics. Within this structure, units spontaneously separate into two groups whose distinguishing feature is that the first group possesses many outwardly-directed connections to the second group, while the second group possesses only few outwardly-directed connections to the first. The relevance of the results to structure formation in neural networks is briefly discussed.Comment: 4 pages, 3 figures, REVTe

    African vegetable diversity in the limelight: project activities by ProNIVA.

    Get PDF
    Poster presented at Botanical Congress. Hamburg (Germany), 3-7 Sep 200

    Simple Lattice-Models of Ion Conduction: Counter Ion Model vs. Random Energy Model

    Full text link
    The role of Coulomb interaction between the mobile particles in ionic conductors is still under debate. To clarify this aspect we perform Monte Carlo simulations on two simple lattice models (Counter Ion Model and Random Energy Model) which contain Coulomb interaction between the positively charged mobile particles, moving on a static disordered energy landscape. We find that the nature of static disorder plays an important role if one wishes to explore the impact of Coulomb interaction on the microscopic dynamics. This Coulomb type interaction impedes the dynamics in the Random Energy Model, but enhances dynamics in the Counter Ion Model in the relevant parameter range.Comment: To be published in Phys. Rev.
    corecore